GETOPT(1) GEDPT(1)

NAME
getopt — parse command options (enhanced)

SYNOPSIS
getopt optstring parameters
getopt[optiond [——] optstring parameters
getopt[optiongd —o|-—options optstring[optiong [——] parameters

DESCRIPTION
getoptis used to break uppérse options in command lines for easy parsing by shell procedures, and to
check for lgd options. Ituses the&sNU getopt(3) routines to do this.

The parametergetopt is called with can be divided into dwparts: options which modify the way getopt
will parse pptionsand —o]--options optstring in the SYNOPSIS), and the parameters which are to be
parsed parametersn the SYNOPSIS. Thesecond part will start at the first non—option parameter that is
not an option argument, or after the first occurrence-of ‘If no ‘-0’ or ‘ ——options option is found in

the first part, the first parameter of the second part is used as the short options string.

If the environment ariableGETOPT_COMPAT IBLE is set, or if its first parameter is not an option (does
not start with a-’, this is the first format in th& YNOPSIS), getopt will generate output that is compati-
ble with that of other versions getopt(1). It will still do parameter shuffling and recognize optionguar
ments (see sectiddOMPAT IBILITY for more information).

Traditional implementations @fetopt(1) are unable to cope with whitespace and other (shell-specific) spe-
cial characters in arguments and non-option parametersolve this problem, this implementation can
generate quoted output which must oncairadpe interpreted by the shell (usually by usinget@ com-
mand). This has the effect of preserving those charactergjoln must callgetopt in a way that is no
longer compatible with other versions (the second or third format irS¥OPSIS. To determine
whether this enhanced versiongaftopt(1) is installed, a special test optieflT{) can be used.

OPTIONS
—a, ——alternative
Allow long options to start with a single’!

-h, ——help
Output a small usage guide and exit successitiyother output is generated.

-l, ——longoptionslongopts
The long (multi-character) options to be recognized. More than one option hame may be speci-
fied at once, by separating the names with commas. This option mayebengre than once, the
longoptsare cumulatie. Each long option name ilongoptsmay be followed by one colon to
indicate it has a required argument, and by @@lons to indicate it has an optional argument.

-n, ——nameprogname
The name that will be used by tgetopt(3) routines when it reports errors. Note that errors of
getopt(1) are still reported as coming from getopt.

—0, ——options shortopts
The short (one—character) options to be recognized. If this option is not found, the first parameter
of getoptthat does not start with & (and is not an option argument) is used as the short options
string. Eachshort option character ishortoptsmay be follaved by one colon to indicate it has a
required argument, and by aveolons to indicate it has an optionagament. Thdirst character
of shortopts may bet' or ‘-’ to influence the way options are parsed and output is generated (see
sectionSCANNING MODES for details).

—(, ——quiet
Disable error reporting by getopt(3).

Linux May 31, 1997 1



GETOPT(1) GEDPT(1)

—-Q, ——quiet—output
Do not generate normal output. Errors are still reportegetbypt(3), unless you also uss.

-s, ——shellshell
Set quoting corentions to those of shell. If no —sgaiment is found, th8ASH corventions are
used. Valid arguments are currentyn* bash, ‘ csh, and ‘tcsh.

—-u, ——unquoted
Do not quote the output. Note that whitespace and special (shell-dependent) characters can cause
havoc in this mode (lile they do with othergetopt(1) implementations).

-T, ——test
Test if yourgetopt(1) is this enhancedevsion or an old version. This generates no output, and sets
the error status to 4. Other implementationgetbpt(1), and this ersion if the environmentawi-
ableGETOPT_COMPAT IBLE is set, will return+~-"and error status 0.

-V, ——version
Output version information and exit successfulyp ather output is generated.

PARSING

This section specifies the format of the second part of the parametgesopf (the parametersin the
SYNOPSIS. Thenext section QUTPUT) describes the output that is generated. These parameters were
typically the parameters a shell function was called with. Care must be taken that each parameter the shell
function was called with corresponds to exactly one parameter in the parameterghsopif(see the
EXAMPLES). All parsing is done by the GNge&topt(3) routines.

The parameters are parsed from left to right. Each parameter is classified as a short option, a long option, an
argument to an option, or a non—option parameter.

A simple short option is a° followed by a short option charactrthe option has a required argument, it

may be written directly after the option character or as the next parameter (ie. separated by whitespace on
the command line). If the option has an optional argument, it must be written directly after the option char
acter if present.

It is possible to specify seral short options after one”, as long as all (except possibly the last) do not
have required or optional arguments.

A long option normally begins with-+’ followed by the long option name. If the option has a required
argument, it may be written directly after the long option name, separated, loy as the next gument

(ie. separated by whitespace on the command lifi¢ghe option has an optional argument, it must be writ-
ten directly after the long option name, separated=hyf‘present (if you add the=" but nothing behind it,

it is interpreted as if no argument was present; this is a slightdee th&UGS). Longoptions may be
abbreviated, as long as the abbreviation is not ambiguous.

Each parameter not starting with-d, ‘and not a required gnment of a previous option, is a hon—option
parameterEach parameter after a+' parameter is alays interpreted as a non—option parametéthe
ervironment \ariable POSIXLY_CORRECT is set, or if the short option string started with+3 all

remaining parameters are interpreted as non—option parameters as soon as the first non—-option parameter is
found.

OUTPUT

Linux

Output is generated for each element described in th@psesection. Output is done in the same order as

the elements are specified in the inputept for non—option parameters. Output can be donerpatible
(unquoted mode, or in such way that whitespace and other special characters wighmeats and
non-option parameters are preserved @GEOTING). Whenthe output is processed in the shell script, it

will seem to be composed of distinct elements that can be processed one by one (by using the shift com-
mand in most shell languages). This is imperfect in unquoted mode, as elements can be syptieetiedne
places if thg contain whitespace or special characters.

May 31, 1997 2



GETOPT(1) GEDPT(1)

If there are problems parsing the parameters,Xamgle because a required argument is not found or an
option is not recognized, an error will be reported on sttlegre will be no output for the offending ele-
ment, and a non—zero error status is returned.

For a short option, a single~" and the option character are generated as one parathgteroption has an
argument, the next parameter will be the argument. If the option takes an optional argument, butsnone w
found, the next parameter will be generated but be empty in quoting nube® econd parameter will be
generated in unquoted (compatible) modtlmte that may othergetopt(1) implementations do not support
optional arguments.

If several short options were specified after a single €éach will be present in the output as a separate
parameter.

For a long option, ~—" and the full option name are generated as one parariéisris done rgardless
whether the option was abbreviated or specified with a sirgi@ the input. Aguments are handled as
with short options.

Normally, no ron—option parameters output is generated until all options and tgeimants hee been
generated. Then--’ is generated as a single paramgdad after it the non—option parameters in the order
they were found, each as a separate param@sly if the first character of the short options string was a
‘=’ non—option parameter output is generated at the plageatedound in the input (this is not supported
if the first format of theSYNOPSISis used; in that case all preceding occurrences-'oénd ‘+' are
ignored).

QUOTING

In compatible mode, whitespace or 'special’ characters in arguments or non—option parameters are not han-
dled correctly As the output is fed to the shell script, the script does now kv it is upposed to break

the output into separate parameters. drcumvent this problem, this implementatiorfest quoting. The

idea is that output is generated with quotes around each paravidb&sr this output is once aig fed to

the shell (usually by a shell’/d command), it is split correctly into separate parameters.

Quoting is not enabled if the environmeatiableGETOPT_COMPAT IBLE is set, if the first form of the
SYNOPSISis used, or if the option-u’ is found.

Different shells use dédrent quoting corentions. You can use the-s option to select the shell you are
using. The following shells are currently supportestt,“ bash, ‘ csh and ‘tcsh’. Actually, only two ‘fla-
vors’ are distinguished: sh—kkquoting cowentions and csh-li&k quoting cowentions. Chances are that if
you use another shell script language, one of thesadlaan still be used.

SCANNING MODES

The first character of the short options string may b€ ar‘a ‘+’ to indicate a special scanning mode. If
the first calling form in theSYNOPSIS is used thg are ignored; the environmentasable
POSIXLY_CORRECT is still examined, though.

If the first character ist’, or if the ewvironment ariablePOSIXLY _CORRECT is set, parsing stops as
soon as the first non—option parameter (ie. a parameter that does not starty)ith found that is not an
option argument. The remaining parameters are all interpreted as non—option parameters.

If the first character is a*, non—option parameters are outputted at the place wherergaéound; in nor
mal operation, theare all collected at the end of output after-a’*parameter has been generated. Note
that this == parameter is still generated, but it willays be the last parameter in this mode.

COMPAT IBILITY

This version ofgetopt(1) is written to be as compatible as possible to other versions. Usually you can just
replace them with this version withoutyamodifications, and with some advantages.

May 31, 1997 3



GETOPT(1) GEDPT(1)

If the first character of the first parameter of getopt is net,aétopt goes into compatibility mode. It will
interpret its first parameter as the string of short options, and all othenants will be parsed. It will still

do parameter shuffling (ie. all non—option parameters are outputted at the end), unless the enviasikment v
ablePOSIXLY_CORRECT is set.

The environmentariable GETOPT_COMPAT IBLE forcesgetoptinto compatibility mode. Setting both
this environment variable arflOSIXLY_CORRECT offers 100% compatibility for ‘difficult’ programs.
Usually though, neither is needed.

In compatibility mode, leading-" and ‘+' characters in the short options string are ignored.

RETURN CODES
getoptreturns error cod® for successful parsingd, if getopt(3) returns errors? if it does not understand
its own parameter§ if an internal error occurs likaut—of-memoryand 4 if it is called with—T.

EXAMPLES
Example scripts for (ba)sh and (t)csh are provided withgitept(1) distribution, and are optionally
installed in/usr/local/share/getoptor /usr/share/getopt

ENVIRONMENT
POSIXLY_CORRECT
This environment variable is examined by ¢etopt(3) routines. If it is set, parsing stops as soon
as a parameter is found that is not an option or an optipmment. All remaining parameters are
also interpreted as non—option parametegardéess whether tlyestart with a =’

GETOPT_COMRTIBLE
Forcesgetoptto use the first calling format as specified in YNOPSIS

BUGS
getopt(3) can parse long options with optional arguments that a&ea gn enpty optional argument (b
can not do this for short options). Thystopt(1) treats optional arguments that are empty as yf weze
not present.

The syntax if you do not want yaishort option \ariables at all is not very intuig (you have b st them
explicitly to the empty string).

AUTHOR
Frodo Looijaard <frodo@frodo.looijaard.name>

SEE ALSO
getopt(3), bash(1), tcsh(1).

Linux May 31, 1997 4



